Vasopressin induces vascular superoxide via endothelin-1 in mineralocorticoid hypertension.
نویسندگان
چکیده
We have recently reported that endothelin-1 (ET-1), which is increased in the arteries of deoxycorticosterone acetate (DOCA)-salt hypertensive rats, stimulates superoxide production. However, the humoral mechanisms responsible for ET-1-induced superoxide formation in low-renin models of hypertension, such as DOCA-salt hypertension, remain undefined. Vasopressin is known to upregulate vascular preproET-1 gene expression in DOCA-salt rats, an effect that is absent in vasopressin-deficient Brattleboro rats treated with DOCA-salt. The present study tested the hypothesis that vasopressin contributes to ET-1-induced vascular superoxide production in DOCA-salt hypertensive rats. Carotid arterial segments of DOCA, sham (uninephrectomized), or normal (untreated) rats were used for the study. In vitro vasopressin treatment of carotid arteries from normal rats for 24 hours, but not 4 hours, increased both ET-1 and superoxide levels. The increase of vasopressin-induced superoxide was reduced by pretreatment of the vessels with ABT627, a selective ETA receptor antagonist ABT627. Vasopressin, ET-1, and superoxide levels were significant elevated in carotid arteries of DOCA-salt rats compared with sham controls. The selective V1-vasopressin receptor antagonist (beta-Mercapto-beta, beta-cyclopentamethylenepropiony1, O-Me-Tyr2, Arg8 vasopressin, ME-AVP), decreased superoxide both in vasopressin-treated vessels of normal rats and in vessels of DOCA-salt rats, with a concomitant reduction of ET-1 content. These results suggest that vasopressin increases vascular superoxide levels by stimulating ET-1 formation in mineralocorticoid hypertension, and that V1-vasopressin receptors play an important role in this process.
منابع مشابه
Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension.
BACKGROUND Angiotensin II-induced hypertension is associated with NAD(P)H oxidase-dependent superoxide production in the vessel wall. Vascular superoxide level is also increased in deoxycorticosterone acetate (DOCA)-salt hypertension, which is associated with a markedly depressed plasma renin activity because of sodium retention. However, the mechanisms underlying superoxide production in low-r...
متن کاملEndothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension.
Although hypertension is a major risk factor for atherosclerosis, its underlying mechanisms remain to be delineated. We have recently reported that both endothelin-1 (ET-1) and vascular cellular adhesion molecule-1 (VCAM-1) levels, key early markers of atherosclerosis, are significantly elevated in carotid arteries of deoxycorticosterone acetate (DOCA)-salt hypertensive rats, a model known for ...
متن کاملNADPH oxidase-derived superoxide augments endothelin-1-induced venoconstriction in mineralocorticoid hypertension.
Deoxycorticosterone acetate (DOCA)-salt hypertension is characterized by low renin/angiotensin but increased arterial superoxide levels. We have recently reported that the arterial endothelin-1 (ET-1) level is increased, resulting in NADPH oxidase activation and superoxide generation. However, the effect of ET-1 on venous superoxide production and its relation to venoconstriction are unknown. T...
متن کاملCentral cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension.
Hypertension, a powerful risk factor for stroke and dementia, has damaging effects on the brain and its vessels. In particular, hypertension alters vital cerebrovascular control mechanisms linking neural activity to cerebral perfusion. In experimental models of slow-developing hypertension, free radical signaling in the subfornical organ (SFO), one of the forebrain circumventricular organs, is ...
متن کاملAldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension.
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO(·)) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ET(B)), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 41 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2003